Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 14(4): e11043, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38576463

RESUMO

How has parasitism changed for Alaskan salmon over the past several decades? Parasitological assessments of salmon are inconsistent across time, and though parasite data are sometimes noted when processing fillets for the market, those data are not retained for more than a few years. The landscape of parasite risk is changing for salmon, and long-term data are needed to quantify this change. Parasitic nematodes of the family Anisakidae (anisakids) use salmonid fishes as intermediate or paratenic hosts in life cycles that terminate in marine mammal definitive hosts. Alaskan marine mammals have been protected since the 1970s, and as populations recover, the density of definitive hosts in this region has increased. To assess whether the anisakid burden has changed in salmonids over time, we used a novel data source: salmon that were caught, canned, and thermally processed for human consumption in Alaska, USA. We examined canned fillets of chum (Oncorhynchus keta, n = 42), coho (Oncorhynchus kisutch, n = 22), pink (Oncorhynchus gorbuscha, n = 62), and sockeye salmon (Oncorhynchus nerka, n = 52) processed between 1979 and 2019. We dissected each fillet and quantified the number of worms per gram of salmon tissue. Anisakid burden increased over time in chum and pink salmon, but there was no change in sockeye or coho salmon. This difference may be due to differences in the prey preferences of each species, or to differences in the parasite species detected across hosts. Canned fish serve as a window into the past, providing information that would otherwise be lost, including information on changes over time in the parasite burden of commercially, culturally, and ecologically important fish species.

2.
Ecol Evol ; 13(12): e10755, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38053794

RESUMO

Parasites are ubiquitous, yet their effects on hosts are difficult to quantify and generalize across ecosystems. One promising metric of parasitic impact uses the metabolic theory of ecology (MTE) to calculate energy flux, an estimate of energy lost to parasites. We investigated the feasibility of using metabolic scaling rules to compare the energetic burden of parasitism among individuals. Specifically, we found substantial sensitivity of energy flux estimates to input parameters used in the MTE equation when using available data from a model host-parasite system (Gasterosteus aculeatus and Schistocephalus solidus). Using literature values, size data from parasitized wild fish, and a respirometry experiment, we estimate that a single S. solidus tapeworm may extract up to 32% of its stickleback host's baseline metabolic energy requirement, and that parasites in multiple infections may collectively extract up to 46%. The amount of energy siphoned from stickleback to tapeworms is large but did not instigate an increase in respiration rate in the current study. This emphasizes the importance of future work focusing on how parasites influence ecosystem energetics. The approach of using the MTE to calculate energy flux provides great promise as a quantitative foundation for such estimates and provides a more concrete metric of parasite impact on hosts than parasite abundance alone.

3.
PLoS One ; 18(9): e0290615, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37703262

RESUMO

The human burden of environmentally transmitted infectious diseases can depend strongly on ecological factors, including the presence or absence of natural enemies. The marbled crayfish (Procambarus virginalis) is a novel invasive species that can tolerate a wide range of ecological conditions and colonize diverse habitats. Marbled crayfish first appeared in Madagascar in 2005 and quickly spread across the country, overlapping with the distribution of freshwater snails that serve as the intermediate host of schistosomiasis-a parasitic disease of poverty with human prevalence ranging up to 94% in Madagascar. It has been hypothesized that the marbled crayfish may serve as a predator of schistosome-competent snails in areas where native predators cannot and yet no systematic study to date has been conducted to estimate its predation rate on snails. Here, we experimentally assessed marbled crayfish consumption of uninfected and infected schistosome-competent snails (Biomphalaria glabrata and Bulinus truncatus) across a range of temperatures, reflective of the habitat range of the marbled crayfish in Madagascar. We found that the relationship between crayfish consumption and temperature is unimodal with a peak at ~27.5°C. Per-capita consumption increased with body size and was not affected either by snail species or their infectious status. We detected a possible satiation effect, i.e., a small but significant reduction in per-capita consumption rate over the 72-hour duration of the predation experiment. Our results suggest that ecological parameters, such as temperature and crayfish weight, influence rates of consumption and, in turn, the potential impact of the marbled crayfish invasion on snail host populations.


Assuntos
Biomphalaria , Schistosomatidae , Humanos , Animais , Astacoidea , Temperatura , Comportamento Predatório , Schistosoma
4.
PLoS One ; 18(6): e0286384, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37294819

RESUMO

Long-term datasets can reveal otherwise undetectable ecological trends, illuminating the historical context of contemporary ecosystem states. We used two decades (1997-2019) of scientific trawling data from a subtidal, benthic site in Puget Sound, Washington, USA to test for gradual trends and sudden shifts in total sea star abundance across 11 species. We specifically assessed whether this community responded to the sea star wasting disease (SSWD) epizootic, which began in 2013. We sampled at depths of 10, 25, 50 and 70 m near Port Madison, WA, and obtained long-term water temperature data. To account for species-level differences in SSWD susceptibility, we divided our sea star abundance data into two categories, depending on the extent to which the species is susceptible to SSWD, then conducted parallel analyses for high-susceptibility and moderate-susceptibility species. The abundance of high-susceptibility sea stars declined in 2014 across depths. In contrast, the abundance of moderate-susceptibility species trended downward throughout the years at the deepest depths- 50 and 70 m-and suddenly declined in 2006 across depths. Water temperature was positively correlated with the abundance of moderate-susceptibility species, and uncorrelated with high-susceptibility sea star abundance. The reported emergence of SSWD in Washington State in the summer of 2014 provides a plausible explanation for the subsequent decline in abundance of high-susceptibility species. However, no long-term stressors or mortality events affecting sea stars were reported in Washington State prior to these years, leaving the declines we observed in moderate-susceptibility species preceding the 2013-2015 SSWD epizootic unexplained. These results suggest that the subtidal sea star community in Port Madison is dynamic, and emphasizes the value of long-term datasets for evaluating patterns of change.


Assuntos
Ecossistema , Síndrome de Emaciação , Animais , Estrelas-do-Mar , Washington , Caquexia
5.
Proc Natl Acad Sci U S A ; 120(3): e2211903120, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36623180

RESUMO

Long-term data allow ecologists to assess trajectories of population abundance. Without this context, it is impossible to know whether a taxon is thriving or declining to extinction. For parasites of wildlife, there are few long-term data-a gap that creates an impediment to managing parasite biodiversity and infectious threats in a changing world. We produced a century-scale time series of metazoan parasite abundance and used it to test whether parasitism is changing in Puget Sound, United States, and, if so, why. We performed parasitological dissection of fluid-preserved specimens held in natural history collections for eight fish species collected between 1880 and 2019. We found that parasite taxa using three or more obligately required host species-a group that comprised 52% of the parasite taxa we detected-declined in abundance at a rate of 10.9% per decade, whereas no change in abundance was detected for parasites using one or two obligately required host species. We tested several potential mechanisms for the decline in 3+-host parasites and found that parasite abundance was negatively correlated with sea surface temperature, diminishing at a rate of 38% for every 1 °C increase. Although the temperature effect was strong, it did not explain all variability in parasite burden, suggesting that other factors may also have contributed to the long-term declines we observed. These data document one century of climate-associated parasite decline in Puget Sound-a massive loss of biodiversity, undetected until now.


Assuntos
Parasitos , Animais , Clima , Animais Selvagens , Biodiversidade , Peixes , Interações Hospedeiro-Parasita
6.
J Anim Ecol ; 92(2): 250-262, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35959636

RESUMO

Many disease ecologists and conservation biologists believe that the world is wormier than it used to be-that is, that parasites are increasing in abundance through time. This argument is intuitively appealing. Ecologists typically see parasitic infections, through their association with disease, as a negative endpoint, and are accustomed to attributing negative outcomes to human interference in the environment, so it slots neatly into our worldview that habitat destruction, biodiversity loss and climate change should have the collateral consequence of causing outbreaks of parasites. But surprisingly, the hypothesis that parasites are increasing in abundance through time remains entirely untested for the vast majority of wildlife parasite species. Historical data on parasites are nearly impossible to find, which leaves no baseline against which to compare contemporary parasite burdens. If we want to know whether the world is wormier than it used to be, there is only one major research avenue that will lead to an answer: parasitological examination of specimens preserved in natural history collections. Recent advances demonstrate that, for many specimen types, it is possible to extract reliable data on parasite presence and abundance. There are millions of suitable specimens that exist in collections around the world. When paired with contemporaneous environmental data, these parasitological data could even point to potential drivers of change in parasite abundance, including climate, pollution or host density change. We explain how to use preserved specimens to address pressing questions in parasite ecology, give a few key examples of how collections-based parasite ecology can resolve these questions, identify some pitfalls and workarounds, and suggest promising areas for research. Natural history specimens are 'parasite time capsules' that give ecologists the opportunity to test whether infectious disease is on the rise and to identify what forces might be driving these changes over time. This approach will facilitate major advances in a new sub-discipline: the historical ecology of parasitism.


Assuntos
Helmintos , Animais , Humanos , Ecologia , Ecossistema , Interações Hospedeiro-Parasita , Parasitologia/tendências , Helmintos/classificação , Helmintos/fisiologia , Helmintíase/epidemiologia , Helmintíase/parasitologia
7.
Ecology ; 104(2): e3933, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36448518

RESUMO

The dilution effect hypothesis posits that increasing biodiversity reduces infectious disease transmission. Here, we propose that habitat quality might modulate this negative biodiversity-disease relationship. Habitat may influence pathogen prevalence directly by affecting host traits like nutrition and immune response (we coined the term "habitat-disease relationship" to describe this phenomenon) or indirectly by changing host biodiversity (biodiversity-disease relationship). We used a path model to test the relative strength of links between habitat, biodiversity, and pathogen prevalence in a pollinator-virus system. High-quality habitat metrics were directly associated with viral prevalence, providing evidence for a habitat-disease relationship. However, the strength and direction of specific habitat effects on viral prevalence varied based on the characteristics of the habitat, host, and pathogen. In general, more natural area and richness of land-cover types were directly associated with increased viral prevalence, whereas greater floral density was associated with reduced viral prevalence. More natural habitat was also indirectly associated with reduced prevalence of two key viruses (black queen cell virus and deformed wing virus) via increased pollinator species richness, providing evidence for a habitat-mediated dilution effect on viral prevalence. Biodiversity-disease relationships varied across viruses, with the prevalence of sacbrood virus not being associated with any habitat quality or pollinator community metrics. Across all viruses and hosts, habitat-disease and biodiversity-disease paths had effects of similar magnitude on viral prevalence. Therefore, habitat quality is a key driver of variation in pathogen prevalence among communities via both direct habitat-disease and indirect biodiversity-disease pathways, though the specific patterns varied among different viruses and host species. Critically, habitat-disease relationships could either contribute to or obscure dilution effects in natural systems depending on the relative strength and direction of the habitat-disease and biodiversity-disease pathways in that host-pathogen system. Therefore, habitat may be an important driver in the complex interactions between hosts and pathogens.


Assuntos
Biodiversidade , Ecossistema , Abelhas , Prevalência
8.
Lancet Planet Health ; 6(11): e870-e879, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36370725

RESUMO

BACKGROUND: Billions of people living in poverty are at risk of environmentally mediated infectious diseases-that is, pathogens with environmental reservoirs that affect disease persistence and control and where environmental control of pathogens can reduce human risk. The complex ecology of these diseases creates a global health problem not easily solved with medical treatment alone. METHODS: We quantified the current global disease burden caused by environmentally mediated infectious diseases and used a structural equation model to explore environmental and socioeconomic factors associated with the human burden of environmentally mediated pathogens across all countries. FINDINGS: We found that around 80% (455 of 560) of WHO-tracked pathogen species known to infect humans are environmentally mediated, causing about 40% (129 488 of 359 341 disability-adjusted life years) of contemporary infectious disease burden (global loss of 130 million years of healthy life annually). The majority of this environmentally mediated disease burden occurs in tropical countries, and the poorest countries carry the highest burdens across all latitudes. We found weak associations between disease burden and biodiversity or agricultural land use at the global scale. In contrast, the proportion of people with rural poor livelihoods in a country was a strong proximate indicator of environmentally mediated infectious disease burden. Political stability and wealth were associated with improved sanitation, better health care, and lower proportions of rural poverty, indirectly resulting in lower burdens of environmentally mediated infections. Rarely, environmentally mediated pathogens can evolve into global pandemics (eg, HIV, COVID-19) affecting even the wealthiest communities. INTERPRETATION: The high and uneven burden of environmentally mediated infections highlights the need for innovative social and ecological interventions to complement biomedical advances in the pursuit of global health and sustainability goals. FUNDING: Bill & Melinda Gates Foundation, National Institutes of Health, National Science Foundation, Alfred P. Sloan Foundation, National Institute for Mathematical and Biological Synthesis, Stanford University, and the US Defense Advanced Research Projects Agency.


Assuntos
COVID-19 , Doenças Transmissíveis , Carga Global da Doença , Humanos , Doenças Transmissíveis/epidemiologia , Saúde Global , Fatores Socioeconômicos , Estados Unidos
9.
Lancet Planet Health ; 6(8): e694-e705, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35932789

RESUMO

As sustainable development practitioners have worked to "ensure healthy lives and promote well-being for all" and "conserve life on land and below water", what progress has been made with win-win interventions that reduce human infectious disease burdens while advancing conservation goals? Using a systematic literature review, we identified 46 proposed solutions, which we then investigated individually using targeted literature reviews. The proposed solutions addressed diverse conservation threats and human infectious diseases, and thus, the proposed interventions varied in scale, costs, and impacts. Some potential solutions had medium-quality to high-quality evidence for previous success in achieving proposed impacts in one or both sectors. However, there were notable evidence gaps within and among solutions, highlighting opportunities for further research and adaptive implementation. Stakeholders seeking win-win interventions can explore this Review and an online database to find and tailor a relevant solution or brainstorm new solutions.


Assuntos
Controle de Doenças Transmissíveis , Desenvolvimento Sustentável , Humanos
10.
J Anim Ecol ; 91(5): 996-1009, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35332535

RESUMO

Although parasites are ubiquitous in marine ecosystems, predicting the abundance of parasites present within marine ecosystems has proven challenging due to the unknown effects of multiple interacting environmental gradients and stressors. Furthermore, parasites often are considered as a uniform group within ecosystems despite their significant diversity. We aim to determine the potential importance of multiple predictors of parasite abundance in coral reef ecosystems, including reef area, island area, human population density, chlorophyll-a, host diversity, coral cover, host abundance and island isolation. Using a model selection approach within a database of more than 1,200 individual fish hosts and their parasites from 11 islands within the Pacific Line Islands archipelago, we reveal that geographic gradients, including island area and island isolation, emerged as the best predictors of parasite abundance. Life history moderated the relationship; parasites with complex life cycles increased in abundance with increasing island isolation, while parasites with direct life cycles decreased with increasing isolation. Direct life cycle parasites increased in abundance with increasing island area, although complex life cycle parasite abundance was not associated with island area. This novel analysis of a unique dataset indicates that parasite abundance in marine systems cannot be predicted precisely without accounting for the independent and interactive effects of each parasite's life history and environmental conditions.


Assuntos
Parasitos , Animais , Recifes de Corais , Ecossistema , Peixes/parasitologia , Interações Hospedeiro-Parasita , Estágios do Ciclo de Vida
12.
PLoS One ; 16(12): e0261202, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34972116

RESUMO

The unusual blue color polymorphism of lingcod (Ophiodon elongatus) is the subject of much speculation but little empirical research; ~20% of lingcod individuals exhibit this striking blue color morph, which is discrete from and found within the same populations as the more common brown morph. In other species, color polymorphisms are intimately linked with host-parasite interactions, which led us to ask whether blue coloration in lingcod might be associated with parasitism, either as cause or effect. To test how color and parasitism are related in this host species, we performed parasitological dissection of 89 lingcod individuals collected across more than 26 degrees of latitude from Alaska, Washington, and California, USA. We found that male lingcod carried 1.89 times more parasites if they were blue than if they were brown, whereas there was no difference in parasite burden between blue and brown female lingcod. Blue individuals of both sexes had lower hepatosomatic index (i.e., relative liver weight) values than did brown individuals, indicating that blueness is associated with poor body condition. The immune systems of male vertebrates are typically less effective than those of females, due to the immunocompromising properties of male sex hormones; this might explain why blueness is associated with elevated parasite burdens in males but not in females. What remains to be determined is whether parasites induce physiological damage that produces blueness or if both blue coloration and parasite burden are driven by some unmeasured variable, such as starvation. Although our study cannot discriminate between these possibilities, our data suggest that the immune system could be involved in the blue color polymorphism-an exciting jumping-off point for future research to definitively identify the cause of lingcod blueness and a hint that immunocompetence and parasitism may play a role in lingcod population dynamics.


Assuntos
Parasitos/fisiologia , Perciformes/genética , Perciformes/parasitologia , Pigmentação/genética , Polimorfismo Genético , Animais , Feminino , Geografia , Modelos Lineares , Masculino , Estados Unidos
13.
PLoS Negl Trop Dis ; 15(10): e0009806, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34610025

RESUMO

BACKGROUND: Infectious disease risk is driven by three interrelated components: exposure, hazard, and vulnerability. For schistosomiasis, exposure occurs through contact with water, which is often tied to daily activities. Water contact, however, does not imply risk unless the environmental hazard of snails and parasites is also present in the water. By increasing reliance on hazardous activities and environments, socio-economic vulnerability can hinder reductions in exposure to a hazard. We aimed to quantify the contributions of exposure, hazard, and vulnerability to the presence and intensity of Schistosoma haematobium re-infection. METHODOLOGY/PRINCIPAL FINDINGS: In 13 villages along the Senegal River, we collected parasitological data from 821 school-aged children, survey data from 411 households where those children resided, and ecological data from all 24 village water access sites. We fit mixed-effects logistic and negative binomial regressions with indices of exposure, hazard, and vulnerability as explanatory variables of Schistosoma haematobium presence and intensity, respectively, controlling for demographic variables. Using multi-model inference to calculate the relative importance of each component of risk, we found that hazard (Æ©wi = 0.95) was the most important component of S. haematobium presence, followed by vulnerability (Æ©wi = 0.91). Exposure (Æ©wi = 1.00) was the most important component of S. haematobium intensity, followed by hazard (Æ©wi = 0.77). Model averaging quantified associations between each infection outcome and indices of exposure, hazard, and vulnerability, revealing a positive association between hazard and infection presence (OR = 1.49, 95% CI 1.12, 1.97), and a positive association between exposure and infection intensity (RR 2.59-3.86, depending on the category; all 95% CIs above 1). CONCLUSIONS/SIGNIFICANCE: Our findings underscore the linkages between social (exposure and vulnerability) and environmental (hazard) processes in the acquisition and accumulation of S. haematobium infection. This approach highlights the importance of implementing both social and environmental interventions to complement mass drug administration.


Assuntos
Reinfecção/parasitologia , Schistosoma haematobium/fisiologia , Esquistossomose Urinária/parasitologia , Vulnerabilidade Social , Adolescente , Animais , Criança , Pré-Escolar , Estudos Transversais , Feminino , Humanos , Estudos Longitudinais , Masculino , Reinfecção/epidemiologia , Reinfecção/psicologia , População Rural/estatística & dados numéricos , Schistosoma haematobium/genética , Schistosoma haematobium/isolamento & purificação , Esquistossomose Urinária/epidemiologia , Esquistossomose Urinária/psicologia , Senegal/epidemiologia , Populações Vulneráveis/estatística & dados numéricos , Água/parasitologia
14.
PLoS Negl Trop Dis ; 15(9): e0009712, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34570777

RESUMO

Schistosome parasites infect more than 200 million people annually, mostly in sub-Saharan Africa, where people may be co-infected with more than one species of the parasite. Infection risk for any single species is determined, in part, by the distribution of its obligate intermediate host snail. As the World Health Organization reprioritizes snail control to reduce the global burden of schistosomiasis, there is renewed importance in knowing when and where to target those efforts, which could vary by schistosome species. This study estimates factors associated with schistosomiasis risk in 16 villages located in the Senegal River Basin, a region hyperendemic for Schistosoma haematobium and S. mansoni. We first analyzed the spatial distributions of the two schistosomes' intermediate host snails (Bulinus spp. and Biomphalaria pfeifferi, respectively) at village water access sites. Then, we separately evaluated the relationships between human S. haematobium and S. mansoni infections and (i) the area of remotely-sensed snail habitat across spatial extents ranging from 1 to 120 m from shorelines, and (ii) water access site size and shape characteristics. We compared the influence of snail habitat across spatial extents because, while snail sampling is traditionally done near shorelines, we hypothesized that snails further from shore also contribute to infection risk. We found that, controlling for demographic variables, human risk for S. haematobium infection was positively correlated with snail habitat when snail habitat was measured over a much greater radius from shore (45 m to 120 m) than usual. S. haematobium risk was also associated with large, open water access sites. However, S. mansoni infection risk was associated with small, sheltered water access sites, and was not positively correlated with snail habitat at any spatial sampling radius. Our findings highlight the need to consider different ecological and environmental factors driving the transmission of each schistosome species in co-endemic landscapes.


Assuntos
Schistosoma haematobium/fisiologia , Schistosoma mansoni/fisiologia , Esquistossomose Urinária/parasitologia , Esquistossomose mansoni/parasitologia , Adolescente , Adulto , Distribuição Animal , Animais , Criança , Reservatórios de Doenças/parasitologia , Ecossistema , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Rios/parasitologia , População Rural/estatística & dados numéricos , Schistosoma haematobium/genética , Schistosoma haematobium/isolamento & purificação , Schistosoma mansoni/genética , Schistosoma mansoni/isolamento & purificação , Esquistossomose Urinária/epidemiologia , Esquistossomose Urinária/transmissão , Esquistossomose mansoni/epidemiologia , Esquistossomose mansoni/transmissão , Senegal/epidemiologia , Caramujos/parasitologia , Caramujos/fisiologia , Adulto Jovem
15.
Proc Biol Sci ; 288(1945): 20203036, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33622132

RESUMO

The abundances of free-living species have changed dramatically in recent decades, but little is known about change in the abundance of parasitic species. We investigated whether populations of several parasites have shifted over time in two shore crab hosts, Hemigrapsus oregonensis and Hemigrapsus nudus, by comparing the prevalence and abundance of three parasite taxa in a historical dataset (1969-1970) to contemporary parasite abundance (2018-2020) for hosts collected from 11 intertidal sites located from Oregon, USA, to British Columbia, Canada. Our data suggest that the abundance of the parasitic isopod Portunion conformis has varied around a stable mean for the past 50 years. No change over time was observed for larval acanthocephalans. However, larval microphallid trematodes increased in prevalence over time among H. oregonensis hosts, from a mean of 8.4-61.8% between the historical and contemporary time points. The substantial increase in the prevalence of larval microphallid trematodes could be owing to increased abundances of their bird final hosts, increased production of parasite infective stages by snail intermediate hosts or both. Our study highlights the variability among parasite species in their temporal trajectories of change.


Assuntos
Braquiúros , Parasitos , Trematódeos , Animais , Colúmbia Britânica/epidemiologia , Interações Hospedeiro-Parasita , América do Norte , Oregon
16.
Ecol Evol ; 11(1): 415-426, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33437439

RESUMO

There are few resources available for assessing historical change in fish trophic dynamics, but specimens held in natural history collections could serve as this resource. In contemporary trophic ecology studies, trophic and source information can be obtained from compound-specific stable isotope analysis of amino acids of nitrogen (CSIA-AA-N).We subjected whole Sebastes ruberrimus and Clupea pallasii to formalin fixation and 70% ethanol preservation. We extracted tissue samples from each fish pre-fixation, after each chemical change, and then in doubling time for 32-64 days once placed in the final preservative. All samples were subjected to CSIA-AA-N, and their glutamic acid and phenylalanine profiles and associated trophic position were examined for differences over time by species.Glutamic acid and phenylalanine values were inconsistent in direction and magnitude, particularly during formalin fixation, but stabilized similarly (in 70% ethanol) among conspecifics. In some cases, the amino acid values of our final samples were significantly different than our initial pre-preservation samples. Nonetheless, significant differences in glutamic acid, phenylalanine, and estimated trophic position were not detected among samples that were in 70% ethanol for >24 hr.Our results suggest that the relative trophic position of fluid-preserved specimens can be estimated using CSIA-AA-N, and CSIA-AA-N estimates for fluid-preserved specimens should only be reported as relative differences. Timelines of trophic position change can be developed by comparing specimens collected at different points in time, revealing trophic information of the past and cryptic ecosystem responses.

17.
Geospat Health ; 15(2)2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33461284

RESUMO

Schistosomiasis, or "snail fever", is a parasitic disease affecting over 200 million people worldwide. People become infected when exposed to water containing particular species of freshwater snails. Habitats for such snails can be mapped using lightweight, inexpensive and field-deployable consumer-grade Unmanned Aerial Vehicles (UAVs), also known as drones. Drones can obtain imagery in remote areas with poor satellite imagery. An unexpected outcome of using drones is public engagement. Whereas sampling snails exposes field technicians to infection risk and might disturb locals who are also using the water site, drones are novel and fun to watch, attracting crowds that can be educated about the infection risk.


Assuntos
Doenças Transmissíveis/epidemiologia , Esquistossomose/epidemiologia , Caramujos/parasitologia , Animais , Ecossistema , Humanos , Tecnologia de Sensoriamento Remoto , Imagens de Satélites
18.
Nat Sustain ; 2(7): 611-620, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33313425

RESUMO

Recent evidence suggests that snail predators may aid efforts to control the human parasitic disease schistosomiasis by eating aquatic snail species that serve as intermediate hosts of the parasite. Potential synergies between schistosomiasis control and aquaculture of giant prawns are evaluated using an integrated bio-economic-epidemiologic model. Combinations of stocking density and aquaculture cycle length that maximize cumulative, discounted profit are identified for two prawn species in sub-Saharan Africa: the endemic, non-domesticated Macrobrachium vollenhovenii, and the non-native, domesticated Macrobrachium rosenbergii. At profit maximizing densities, both M. rosenbergii and M. vollenhovenii may substantially reduce intermediate host snail populations and aid schistosomiasis control efforts. Control strategies drawing on both prawn aquaculture to reduce intermediate host snail populations and mass drug administration to treat infected individuals are found to be superior to either strategy alone. Integrated aquaculture-based interventions can be a win-win strategy in terms of health and sustainable development in schistosomiasis endemic regions of the world.

19.
PLoS Negl Trop Dis ; 14(7): e0008417, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32628666

RESUMO

BACKGROUND: Schistosomiasis is responsible for the second highest burden of disease among neglected tropical diseases globally, with over 90 percent of cases occurring in African regions where drugs to treat the disease are only sporadically available. Additionally, human re-infection after treatment can be a problem where there are high numbers of infected snails in the environment. Recent experiments indicate that aquatic factors, including plants, nutrients, or predators, can influence snail abundance and parasite production within infected snails, both components of human risk. This study investigated how snail host abundance and release of cercariae (the free swimming stage infective to humans) varies at water access sites in an endemic region in Senegal, a setting where human schistosomiasis prevalence is among the highest globally. METHODS/PRINCIPAL FINDINGS: We collected snail intermediate hosts at 15 random points stratified by three habitat types at 36 water access sites, and counted cercarial production by each snail after transfer to the laboratory on the same day. We found that aquatic vegetation was positively associated with per-capita cercarial release by snails, probably because macrophytes harbor periphyton resources that snails feed upon, and well-fed snails tend to produce more parasites. In contrast, the abundance of aquatic macroinvertebrate snail predators was negatively associated with per-capita cercarial release by snails, probably because of several potential sublethal effects on snails or snail infection, despite a positive association between snail predators and total snail numbers at a site, possibly due to shared habitat usage or prey tracking by the predators. Thus, complex bottom-up and top-down ecological effects in this region plausibly influence the snail shedding rate and thus, total local density of schistosome cercariae. CONCLUSIONS/SIGNIFICANCE: Our study suggests that aquatic macrophytes and snail predators can influence per-capita cercarial production and total abundance of snails. Thus, snail control efforts might benefit by targeting specific snail habitats where parasite production is greatest. In conclusion, a better understanding of top-down and bottom-up ecological factors that regulate densities of cercarial release by snails, rather than solely snail densities or snail infection prevalence, might facilitate improved schistosomiasis control.


Assuntos
Plantas , Schistosoma/fisiologia , Esquistossomose/epidemiologia , Caramujos/parasitologia , Animais , Cercárias/fisiologia , Ecossistema , Humanos , Perifíton , Esquistossomose/transmissão , Senegal
20.
Ecol Evol ; 10(13): 6449-6460, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32724525

RESUMO

Long-term datasets are needed to evaluate temporal patterns in wildlife disease burdens, but historical data on parasite abundance are extremely rare. For more than a century, natural history collections have been accumulating fluid-preserved specimens, which should contain the parasites infecting the host at the time of its preservation. However, before this unique data source can be exploited, we must identify the artifacts that are introduced by the preservation process. Here, we experimentally address whether the preservation process alters the degree to which metazoan parasites are detectable in fluid-preserved fish specimens when using visual parasite detection techniques. We randomly assigned fish of three species (Gadus chalcogrammus, Thaleichthys pacificus, and Parophrys vetulus) to two treatments. In the first treatment, fish were preserved according to the standard procedures used in ichthyological collections. Immediately after the fluid-preservation process was complete, we performed parasitological dissection on those specimens. The second treatment was a control, in which fish were dissected without being subjected to the fluid-preservation process. We compared parasite abundance between the two treatments. Across 298 fish individuals and 59 host-parasite pairs, we found few differences between treatments, with 24 of 27 host-parasite pairs equally abundant between the two treatments. Of these, one pair was significantly more abundant in the preservation treatment than in the control group, and two pairs were significantly less abundant in the preservation treatment than in the control group. Our data suggest that the fluid-preservation process does not have a substantial effect on the detectability of metazoan parasites. This study addresses only the effects of the fixation and preservation process; long-term experiments are needed to address whether parasite detectability remains unchanged in the months, years, and decades of storage following preservation. If so, ecologists will be able to reconstruct novel, long-term datasets on parasite diversity and abundance over the past century or more using fluid-preserved specimens from natural history collections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...